Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Mathematical Modeling of a Blood Flow in Flow Path of the Axial Pump of Ventricular Assist Device

# 10, October 2015
DOI: 10.7463/1015.0821220
Article file: SE-BMSTU...o488.pdf (1472.62Kb)
authors: A.M. Guskov1,*, F.D. Sorokin1, E.P. Banin1,2, A.E. Krupnin1



1 Bauman Moscow State Technical University, Moscow, Russia

2 National Research Centre "Kurchatov Institute", Moscow, Russia

The research object is an axial left ventricular assist device (LVAD) design such as: straightener, impeller, and diffuser.
The objective of the study is to reveal an influence of axial LVAD pump’s impeller design factors such as pitch and incidence on head-capacity curves and stagnation and hemolysis zones generation. The mathematical modeling is carried out by computational fluid dynamics analysis in a stationary setting.
The study concentrates on  mathematical modeling of a blood flow in flow path of the axial LVAD in consideration of non-Newtonian blood behavior. To describe blood viscosity as a nonlinear function of shear strain rate the Carreau-Yasuda model is used. Head-capacity curves of axial LVAD pump for different pitch and incidence values are plotted. Mathematical modeling revealed a significant difference between head-capacity curves. Velocity and shear stresses fields which were plotted for pump operating mode revealed stagnation and potential hemolysis zones presence. In the future we plan to use the data to improve axial LVAD design to satisfy such criteria as maximization of coefficient of efficiency and minimization of hemolysis.

References
  1. Kyo S. Ventricular assist devices in advanced-stage heart failure . Springer Japan, 2014. 145 p. DOI: 10.1007/978-4-431-54466-1
  2. Milano C.A., Simeone A.A. Mechanical circulatory support: devices, outcomes and complications. Heart Failure Reviews , 2013, vol. 18, no. 1, pp. 35-53. DOI: 10.1007/s10741-012-9303-5
  3. Hetzer R., Henning E., Loebe M., eds. Mechanical Circulatory Support: In Children. Towards Myocardial Recovery. Permanent . Springer Science & Business Media, 2012. 224 p.
  4. Bogdanova Yu.V., Guskov A.M. Left ventricular assist device (lvad) design features: literature review. Nauka i obrazovanie MGTU im. N.E. Baumana= Science and Education of the Bauman MSTU, 2014, no. 3, pp. 162-187. DOI:10.7463/0314.0705250
  5. Kirklin J.K., Naftel D.C., Kormos R.L., Stevensonet L.W., Pagani F.D., Miller M.A., Baldwin J.T., Young J.B. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. The Journal of Heart and Lung Transplantation, 2013, vol. 32, no. 2, pp. 141-156. DOI:10.1016/j.healun.2012.12.004
  6. Regirer S.A. Lektsii po biologicheskoi mekhanike Ch.1 [ Lectures on biological mechanics. Pt. 1 ]. Moscow, MSU Publ., 1980. 144 p. (in Russian).
  7. Itkin G.P. Biofizika krovoobrashcheniya [ Biophysics of blood circulation ]. Moscow, MAI Publ., 2002. 92 p. (in Russian).
  8. Baskurt O.K., Hardeman M.R., Rampling M.W., Meiselman H.J., eds. Handbook of Hemorheology and Hemodynamics . IOS Press, 2007. 468 p. (Ser. Biomedical and Health Research ; vol. 69).
  9. Boyd J., Buick J. M., Green S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids, 2007, vol. 19, no. 9, art. no. 093103. DOI:10.1063/1.2772250
  10. Cho Y.I., Kensey K.R. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology , 1991, vol. 28, no. 3-4, pp. 241-262.
  11. Shaik E., Hoffmann K.A., Dietiker J.F. Numerical flow simulations of blood in arteries. 4th AIAA Aerospace Science Meeting and Exhibit , 2006, pp. 294-307. DOI: 10.2514/6.2006-294
  12. Banin E.P., Gus'kov A.M., Sorokin F.D. Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2015, no. 2, pp. 250-268. DOI: 10.7463/0215.0755225 (in Russian).
  13. Su B., Chua L.P., Lim T.M., Zhou T. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Artificial Organs , 2010, vol. 34, no. 9, pp. 745-759. DOI: 10.1111/j.1525-1594.2010.01099.x
  14. Wu J., Antaki J.F., Verkaik J., Snyder S., Ricci M. Computational fluid dynamics-based design optimization for an implantable miniature Maglev pediatric ventricular assist device. Journal of Fluids Engineering , 2012, vol. 134, no. 4. Art. no. 041101. DOI: 10.1115/1.4005765
  15. Zhang L., Jia Y., Zhang W., Wang Y., Zhao Q. Numerical Simulation Investigation on Flow Field of Axial Blood Pump. In book: Advances in Computer Science and Engineering . Springer Berlin Heidelberg, 2012, pp. 223-229. DOI: 10.1007/978-3-642-27948-5_31
  16. Song X., Wood H.G., Day S.W., Olsen D.B. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artificial Organs , 2003, vol. 27, no. 10, pp. 935-937. DOI: 10.1046/j.1525-1594.2003.00025.x
  17. Fan H.M., Hong F.W., Zhang G.P., Liang Y.E., Liu Z.M. Applications of CFD technique in the design and flow analysis of implantable axial flow blood pump. Journal of Hydrodynamics, Ser. B , 2010, vol. 22, no. 4, pp. 518-525. DOI: 10.1016/S1001-6058(09)60084-6
  18. Fan H., Hong F., Zhou L., Chen Y., Ye L., Liu Z. Design of implantable axial-flow blood pump and numerical studies on its performance. Journal of Hydrodynamics, Ser. B , 2009, vol. 21, no. 4, pp. 445-452. DOI: 10.1016/S1001-6058(08)60170-5
  19. Zhang D., Shi W., Chen B., Guan X. Unsteady flow analysis and experimental investigation of axial-flow pump. Journal of Hydrodynamics, Ser. B , 2010, vol. 22, no. 1, pp. 35-43. DOI: 10.1016/S1001-6058(09)60025-1
  20. Wilcox D.C. Turbulence modeling for CFD . La Canada, CA, DCW Industries, 1998, pp. 103-217.
  21. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal , 1994, vol. 32, no. 8, pp. 1598-1605. DOI: 10.2514/3.12149
  22. Behbahani M., Behr M., Hormes M., Steinseifer U., Arora D., Coronado O., Pasqualia M. A review of computational fluid dynamics analysis of blood pumps. European Journal of Applied Mathematics, 2009, vol. 20, iss. 4, pp. 363-397. DOI:10.1017/S0956792509007839
  23. Yang X.C., Zhang Y., Gui X.M., Hu S.S. Computational Fluid Dynamics ‐ Based Hydraulic and Hemolytic Analyses of a Novel Left Ventricular Assist Blood Pump. Artificial Organs, 2011, vol. 35, no. 10, pp. 948-955. DOI: 10.1111/j.1525-1594.2011.01203.x
  24. Toptop K., Kadipasaoglu K.A. Design and Numeric Evaluation of a Novel Axial-Flow Left Ventricular Assist Device. ASAIO Journal , 2013, vol. 59, no. 3, pp. 230-239. DOI: 10.1097/MAT.0b013e31828a6bc1
  25. Song X., Untaroiu A., Wood H.G., Allaire P.E., Throckmorton A.L., Amy L., Day S.W., Olsen D.B. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO Journal , 2004, vol. 50, no. 3, pp. 215-224. DOI: 10.1097/01.MAT.0000124954.69612.83

Thematic rubrics:
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)