Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices

# 02, February 2015
DOI: 10.7463/0215.0755225
Article file: SE-BMSTU...o268.pdf (1587.37Kb)
authors: E.P. Banin, A.M. Guskov, F.D. Sorokin

The research object is inlet apparatus of ventricular assist device, namely inlet cannula and straightener.
The purpose of the study is to reveal features of blood flow in inlet apparatus of ventricular assist device. The mathematical modeling is carried out by computational fluid dynamics analysis in a stationary setting.
The first part of study concerns the analysis of existing approaches to the numerical and experimental studies in designing the ventricular assist devices of rotary type. It reveals the features of each approach for their further application in practice. The article presents an original design of developed hydraulic test bench to verify the results of mathematical modeling. Analysis of foreign authors’ studies showed that there is no enough attention paid to design of the adjacent pump assemblies of ventricular assist device. The second part of study considers direct mathematical modeling of input apparatus of ventricular assist device. The study examined straightener with three or four blades. Mathematical modeling has revealed the presence of potentially dangerous stagnation zones and essential asymmetry of the outlet flow from the input unit. The found features must be taken in consideration in designing the ventricular assist device pumps. In the future we plan to use obtained data to create a parametric model of the rotor and the diffuser considering the abovementioned features.

References
  1. Milano C.A., Simeone A.A. Mechanical circulatory support: devices, outcomes and complications. Heart Failure Reviews , 2013, vol. 18, no. 1, pp. 35-53.
  2. Agarwal S., High K.M. Newer-generation ventricular assist devices. Best Practice & Research Clinical Anaesthesiology , 2012, vol. 26, no. 2, pp. 117-130. DOI:10.1016/j.bpa.2012.01.003
  3. Hetzer R., Hennig E. Mechanical Circulatory Support Systems. In: Kramme R., Hoffmann K.-P., Pozos R.S., eds. Springer Handbook of Medical Technology . Springer Berlin Heidelberg, 2011, pp. 723-748. DOI:10.1007/978-3-540-74658-4_36
  4. Bogdanova Yu.V., Gus'kov A.M . Left ventricular assist device (lvad) design features: literature review. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2014, no. 3, pp. 162-187. DOI:10.7463/0314.0705250
  5. Kamdar F., John R. Surgical Mechanical Circulatory Support. In: Vlodaver Z., Wilson R.F., Garry D.J., eds . Coronary Heart Disease . Springer US, 2012, pp. 455-469. DOI:10.1007/978-1-4614-1475-9_26
  6. Apel J., Neudel F., Reul H. Computational fluid dynamics and experimental validation of a microaxial blood pump. ASAIO Journal , 2001, vol. 47, no. 5, pp. 552-558. DOI:10.1097/00002480-200109000-00031
  7. Palacios I.F. Left ventricular assistant device impella 2.5 usage for patients undergoing high risk PCI. Catheterization and Cardiovascular Interventions , 2012, vol. 79, no. 7, pp. 1135-1137.
  8. O’Neill W.W., Schreiber T., Wohns D.H.W., Rihal C., Naidu S.S., Civitello A.B., Dixon S.R., Massaro J.M., Maini B., Ohman E.M. The Current Use of Impella 2.5 in Acute Myocardial Infarction Complicated by Cardiogenic Shock: Results from the USpella Registry. Journal of Interventional Cardiology , 2014, vol. 27, no. 1, pp. 1-11. DOI:10.1111/joic.12080
  9. Sibbald M., Dzavik V. Severe hemolysis associated with use of the impella LP 2.5 mechanical assist device. Catheterization and Cardiovascular Interventions , 2012, vol. 80, no. 5, pp. 840-844. DOI:10.1002/ccd.24280
  10. John R. Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices. Seminars in Thoracic and Cardiovascular Surgery , 2008, vol. 20, no. 3, pp. 264-272. DOI:10.1053/j.semtcvs.2008.08.001
  11. Araki K., Taenaka Y., Masuzawa T., Tatsumi E., Wakisaka Y., Watari M., Nakatani T., Akagi H., Baba Y., Anai H., Park Y.H., Eya K. A flow visualization study of the NCVC centrifugal blood pump. Artificial Organs , 1994, vol. 18, no. 9, pp. 669-672. DOI:10.1111/j.1525-1594.1994.tb03397.x
  12. Mizunuma H., Nakajima R. Experimental study on shear stress distributions in a centrifugal blood pump. Artificial Organs , 2007, vol. 31, no. 7, pp. 550-559. DOI:10.1111/j.1525-1594.2007.00421.x
  13. Wu Z.J., Gottlieb R.K., Burgreen G.W., Holmes J.A., Borzelleca D.C., Kameneva M.V., Griffith B.P., Antaki J.F. Investigation of fluid dynamics within a miniature mixed flow blood pump. Experiments in Fluids , 2001, vol. 31, no. 6, pp. 615-629. DOI:10.1007/s003480100308
  14. Horie M., Yamamura K. Visualization of main and leakage flow in magnetically suspended centrifugal blood pump. Journal of Visualization , 2012, vol. 15, no. 4, pp. 353-361. DOI:10.1007/s12650-012-0137-y
  15. Chua L.P., Ong K.S., Song G. Study of Velocity and Shear Stress Distributions in the Impeller Passages and the Volute of a Bio ‐ centrifugal Ventricular Assist Device. Artificial Organs , 2008, vol. 32, no. 5, pp. 376-387. DOI:10.1111/j.1525-1594.2008.00556.x
  16. Ahmed S., Funakubo A., Sakuma I., Fukui Y., Dohi T. Experimental study on hemolysis in centrifugal blood pumps: improvement of flow visualization method. Artificial Organs , 1999, vol. 23, no. 6, pp. 542-546. DOI:10.1046/j.1525-1594.1999.06399.x
  17. Kaufmann T.A.S., Gregory S.D., Büsen M.R., Tansley G.D., Steinseifer U. Development of a Numerical Pump Testing Framework. Artificial Organs , 2014, vol. 38, no. 9, pp. 783-790. DOI:10.1111/aor.12395
  18. Triep M., Brücker C., Schröder W., SiessT. Computational Fluid Dynamics and Digital Particle Image Velocimetry Study of the Flow Through an Optimized Micro ‐ axial Blood Pump. Artificial Organs , 2006, vol. 30, no. 5, pp. 384-391. DOI:10.1111/j.1525-1594.2006.00230.x
  19. Day S.W., McDaniel J.C., Wood H.G., Allaire P.E., Song X., Lemire P.P., Miles S.D. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements. Artificial Organs , 2002, vol. 26, no. 11, pp. 1002-1005. DOI:10.1046/j.1525-1594.2002.07124.x
  20. Yang X., Gui X., Huang H., Shen Y., Yu Z., Zhang Y. Particle image velocimetry experimental and computational investigation of a blood pump. Journal of Thermal Science , 2012, vol. 21, no. 3, pp. 262-268. DOI:10.1007/s11630-012-0543-4
  21. Su B., Chua L.P., Lim T.M., Zhou T. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Artificial Organs , 2010, vol. 34, no. 9, pp. 745-759. DOI: 10.1111/j.1525-1594.2010.01099.x
  22. Zhang Y., Zhan Z., Gui X.-M., Sun H.-S., Zhang H., Zheng Z., Zhou J.-Y., Zhu X.-D., Li G.-R., Hu S.-S., Jin D.-H. Design optimization of an axial blood pump with computational fluid dynamics. ASAIO Journal , 2008, vol. 54, no. 2, pp. 150-155. DOI:10.1097/MAT.0b013e318164137f
  23. Untaroiu A., Wood H.G., Allaire P.E., Throckmorton A.L., Day S., Patel S.M., Ellman P., Tribble C., Olsen D.B. Computational design and experimental testing of a novel axial flow LVAD. ASAIO Journal , 2005, vol. 51, no. 6, pp. 702-710. DOI:10.1097/01.mat.0000186126.21106.27

Thematic rubrics:
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)